New England Masts
and
The King's Broad Arrow

by Samuel F. Manning
NEW ENGLAND MASTS AND THE KING'S BROAD ARROW

by

S F Manning

Maritime Monographs and Reports
No. 42 – 1979

Published by the Trustees of the National Maritime Museum
CONTENTS

List of Illustrations ii
Foreword iii
Introduction 1

Part 1: England
The Wooden Economy 5
England and the Baltic Source 7
Mast Woods 9
Growing Need 13

Part II: New England
New England Pines 17
Settlement and the Beginnings of New England Trade 19
The Broad Arrow Policy 25
Enabling Acts 28
Gains and Abuses 31
Mast Agents and Surveyors 35

Select Bibliography 40
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Illustration</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The King's Broad Arrow</td>
<td>iv</td>
</tr>
<tr>
<td>2</td>
<td>Bedding the Fall</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Felling</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Limbing</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>Hovels</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>Twitching</td>
<td>21</td>
</tr>
<tr>
<td>7</td>
<td>Snub Rope and Bridle Chains</td>
<td>24</td>
</tr>
<tr>
<td>8</td>
<td>Baulking</td>
<td>26</td>
</tr>
<tr>
<td>9</td>
<td>Town Square</td>
<td>27</td>
</tr>
<tr>
<td>10</td>
<td>Mast Landing</td>
<td>29</td>
</tr>
<tr>
<td>11</td>
<td>Mast Depot</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>Ton Timber</td>
<td>32</td>
</tr>
<tr>
<td>13</td>
<td>Mast Ships</td>
<td>34</td>
</tr>
<tr>
<td>14</td>
<td>Stern Port</td>
<td>36</td>
</tr>
<tr>
<td>15</td>
<td>The Hold</td>
<td>38</td>
</tr>
<tr>
<td>16</td>
<td>Departure</td>
<td>39</td>
</tr>
</tbody>
</table>

MAPS

I Northern Europe
II New England and Atlantic Canada
III The White Pine Belt
IV Exports and Returns – 1650 –

The illustrations were all commissioned by Maine Public Broadcasting Network for the film documentary, *Home to the Sea.*

FOREWORD

The supply of naval stores to this country in the age of wooden sailing ships was vital to shipowners, merchants, shipbuilders, the navy and the nation as a whole. Quite simply, without the safe delivery of very large quantities of mast timber, oak, pitch, tar and hemp there would have been no merchant shipping, none of the trade on which the wealth of this country was based, nor would there have been a Royal Navy to protect it.

The tall white pines of New England were of fundamental importance to the Navy in the seventeenth and particularly the eighteenth centuries. With the Baltic at risk from hostile continental powers, the British government turned to the untouched forests of North America to supply the great masts.

Yet this important trade has left little mark today. We have documents of trade statistics and treatises on how to mast a ship. Historians have written on the effects of supply on the navy, even speculated on how wars turned upon the breaking of vital spars at vital moments. What my friend Sam Manning has provided in this monograph is a carefully researched and meticulously illustrated account of the practical aspects of the lumber industry. It fills a large gap in our knowledge.

Sam is an artist historian whose drawings of wood shipbuilding have become famous on both sides of the Atlantic. He lives at Camden, Maine, on the coast of what was once the land of the great pines in a house overlooking Penobscot Bay. He knows the woods and the coasts he draws at first hand. He writes with the authority which is based on long study and experience.

Basil Greenhill
Director
National Maritime Museum
The King's Broad Arrow

Fig 1. This was the ancient mark applied to British naval property. Three lines or cuts coming together as an arrow point with the apex upward. A tree which bore this mark in colonial New England was a white pine suitable for a mast in an English man-of-war. If you cut it down for any purpose other than delivery to the King's mast agent, you were liable for a fine of £100 for every tree illegally cut.

INTRODUCTION

During the fall and winter of 1976 I was commissioned by the Maine Public Broadcasting Network to draw sixteen scenes relating to the colonial mast trade which laid the foundations for lumbering and shipbuilding in Maine thereafter. The pictures were to be used in the opening minutes of an hour-long TV documentary titled Home to the Sea. The film, a Bicentennial celebration of Maine's maritime heritage, was released during the summer of 1977.

It was tantalizing assignment because MPBN's research effort in the Maine Archives had uncovered a certain amount of contemporary commentary relating to the once all-important mast trade, but no pictures of any kind that could be identified with it. There was very little description of mast-logging activity that an illustrator could work from. Film producer Eton Churchill, himself a writer on Maine history, was able to send me to the places where mast logging had been done. Gorham, Maine was chosen for the tree-cutting and baulking scenes because a near-contemporary account of mast logging on pioneer farmland can be found in Elijah Kellogg's Good Old Times. The mast route from Gorham led into the marshes at Stroudwater on Portland's Fore River. Thence, with the tide, to a mast house which was once situated just downriver from the crumbling abutment of old Route 1 bridge on Portland neck. Sketches were made and shown to old time Maine loggers, ox drovers and shipwrights, as well as seamen who had freighted big timber in the last days of commercial sail. Corrected drafts were sent to the National Maritime Museum in England, for the detailed overview which the British historians could give us. When completed, the sixteen scenes represented the combined thinking of a good many knowledgeable people.

The scale of the mast logging operation, and its impact on England then, and North America later, was pieced together in the 1920s by Robert G. Albion, a distinguished marine historian, in Forests and Sea Power: The Timber Problem of the Royal Navy, 1652-1862 (1926). The book has a long chapter which explores the Broad Arrow Policy as it applied to North America. Another full chapter on the subject can be found in William Hutchinson Rowe's, The Maritime History of Maine (1948). A more recent book, Tall Trees, Tough Men by Robert E. Pike (1967) highlights the basic facts of the Broad Arrow Policy and gives a penetrating look at how the big timbers were actually handled in the woods and on the rivers. The forests of early England and the conditions which led to their demise; the forests of pre-settlement New England and the Yankee industries which they supported are examined in colorful detail in Charles F. Carroll's, The Timber Economy of Puritan New England (1973).

The Broad Arrow story applies to pines. Spruce, a tougher, longer-grained wood formerly associated with the finest yacht spars, was not the timber wanted for masting a great vessel in our colonial days. The sharp-eyed reader of the story to follow will note that the species Pinus sylvestris, described as a 'fir' by Albion and others, is by its botanical name really a pine. Two types of spruce given the abies prefix in my story have the Latin handle of a fir. Why should a tree be of one species to a botanist and another to a ship builder? Custom or usage, probably. Possibly ignorance. We have a few mis-nomers of this kind in our language today. Take Oregon Pine, for instance. We know this tree also as 'Douglas Fir.' However, its botanical name, Pseudotsuga menziesii, shows it to be some kind of hemlock.
THE WOODEN ECONOMY

This is a story about ships’ masts and mast timber during the period of English settlement in colonial North America. Were it written about our own time, this tale could focus on petroleum with similar overtones of wartime scarcity, international intrigue along the routes of supply, and the willingness of sovereigns to move experts into wilderness regions in order to control the source. The civilized world of today runs on oil. In the seventeenth century it ran on wood. Wood for virtually everything: architectural structures, transportation conveyances, containers, home fuel, industrial fuel, mine props, basic machinery, tars, dyes; each application of wood seeming to breed further need for wood structure or wood products. With early European settlement concentrated on the coasts and waterways, the primeval forests had been mowed back to where timber near the shores was scarce. Overland haulage of timber was expensive or nearly impossibly on the mired cart roads of the period. Town populations shivered and froze for lack of affordable fuel in the winter-time. The urban poor were fleeced by woodmongers as were kings who depended upon merchants to supply prime timber for ships.

Most commerce was waterborne in the 1600s. Wooden ships for commerce and for war were built by the thousands among the handful of kingdoms washed by the English Channel. Nations then, like nations today, scrambled and fought to secure the sources of ship timber, mast trees and other so-called naval stores with the vigour that we pursue and protect our sources of oil. Their ships were wind driven. Masts were required to transmit the force of wind via sails into driving power for the hull. Mast timber for large vessels had become scarce and difficult to obtain. For most ship-owning countries, mast timber had become war materiel of the most strategic sort.
ENGLAND AND THE BALTIC SOURCE

England, at the opening of the seventeenth century, was a pastoral land with population cut, patched and rewoven by invading armies of north Germans, Danes and French, always from the sea, during the Early Middle Ages. Through five centuries following the Norman invasion of 1066, English kings had solidified control over the heartland of Britain. For three centuries the power of the English monarchy had vied with the provisions of the Magna Carta and the existence of an embryonic Parliament. Coastal trade in small English vessels grew into cross-Channel trade. With larger vessels, English merchants ventured into the Baltic, the Mediterranean, around Africa to the back doors of the Levant, and to the rich fishing grounds of Iceland and Newfoundland. Defence of home shores by naval vessels grew into a need for naval protection on the routes of trade. Shipbuilding become profitable. Successful principles of ship design wrested from the Italians, the French and the Dutch became an English science which launched English vessels into the carrying trades long occupied by Continental powers. Shipwrights, caulkers, mastwrights, riggers, ship smiths and coopered led the army of home-grown trades, once entirely pastoral, now increasingly mercantile, which moved English goods into overseas markets and sought return cargoes of raw materials.

Thick forests of hardwoods and conifers which covered the greater part of the British Isles in prehistoric times had been pretty well levelled by the thirteenth century. Certain tracts had been set aside for royal forests to be hunted or exploited of timber for the royal coffers. But these too were badly wasted of shipbuilding timber by the seventeenth century when England’s maritime expansion got into stride. Shortages had begun to develop in shipbuilding materials. Oak, once so plentiful that it had become the only acceptable wood for frame and plank in English fighting ships, had been wantonly destroyed for agriculture and industry without much thought to replenishing the source. Larger ships required larger masts. Tremendous poles—three feet thick at the deck and extending upward one hundred and twenty feet in the case of a first-rate man-of-war extended further upward with a topmast and further yet with a topgallant mast. A ship-rigged vessel required three lower masts, three topmasts, three topgallants, a number of yards to spread sail across the masts, and a bowsprit and a jibboom atop the bowsprit to extend the rig forward of the hull. Masts, yards, bowsprit and jibboom, all generally denoted as ‘spars,’ required long-grained softwoods for their construction to save weight aloft and to assure the suppleness that hardwoods cannot provide.

England grew some softwoods, notably fir, suitable for the masts of small vessels and some of the lesser spars in men-of-war and ocean transports. But her soil did not support growth of the huge conifers required for the lower masts and bowsprits of her growing deepwater fleet. These largest spars, collectively termed ‘masts’ in the timber trade, were also sought by England’s arch rivals—the Spanish, the French and the Dutch—whose navies and great merchant carriers were also limited by the lack of mast trees on home soil. Navies rose or fell with the ability of home docks to fit or replace masts that would stand the crushing force of sail carried in storm or battle. Expansion of shipbuilding, ocean commerce and the threat of naval wars at the outset of the seventeenth century drove England into the Baltic for new supplies of oak, mast timber and the assortment of fibres, sailcloth and wood oils that constituted naval stores.

Although the states bordering the south and eastern shores of the Baltic Sea had long offered the finest of mast and hull timber to the navies of the world along with the list of lesser wood products of interest to belligerents, they lay bottled behind the narrow strait separating Denmark from Sweden. Access required favourable diplomacy or a strong fleet and was subject to closure in wartime. Fees, for passage through the strait, were expensive. The trip was a thousand miles one-way to the mast ports. With maritime foes or rivals hovering around to get at the same source of naval supplies, armed convoy was usually necessary to assure delivery. To the cost of the timber in Baltic ports were added the costs of transport, naval protection, bribes, fees, and the profit of the timber contractor who engineered the purchase. Since few English goods were salable to the Baltic states during those years, costs of the homeward trip were not offset by freight generated on the outbound voyage from England. The convoys sailed essentially empty on the eastward leg.
The Baltic was England's closest source of great masts. To keep the Baltic open for timber trade with England became a focal point of British naval policy in the centuries to follow.

Generations of trial and error had taught English shipbuilders that certain qualities were wanted in timber chosen for masts. These were straightness, suppleness, elasticity, durability, and retention of resin. Of the various softwoods tried, only the North European fir had these qualities. Specifically, firs from the middle north European latitudes in a belt extending from the Baltic shore of Poland to the heartland of Russia. Beyond the northern limit of this belt the firs had too little resin to be durable in a spar. Below the southern limit the firs matured too rapidly to build tight grain, and they lost their resin soon after felling. Firs from Norway, Scotland and elsewhere were considered inferior by English shipbuilders and were relegated to last resort or to lesser spars.

For eight hundred years prior to the colonization of North America, the Baltic fir had been floated down the great river systems of eastern Europe and western Russia to the Baltic ports where they were boomed, graded, dressed, and offered to the agents of maritime countries seeking masts and spars. The Baltic fir, sometimes called 'Riga fir,' had become the British Admiralty's first choice of timber for a great mast. Its resilience and durability were due to the retention of resin long after cutting.

The designation 'fir' for the prime mast wood is historic in that trade. The northern European fir is of the genus *Pinus sylvestris*—actually a pine. It is known to other trades and in other regions as 'scots pine.'

The Admiralty's second choice of mast timber was the North American white pine, *Pinus strobus.* A shipload of pine masts had been received from Jamestown in 1609 and another from Penobscot Bay in 1634. The North American pine was found to be somewhat inferior in strength to the Baltic fir, but it offered a saving of weight by one fourth. Virgin stands of American pine gave promise of mast sticks of a height and girth long since thinned out from the Baltic source. But although the great masts from across the Atlantic were a boon to shipwrights faced with building masts for the largest ships from smaller sticks of Baltic fir coaked and banded together, the Admiralty was slow to cultivate a North American supply of masts.
Felling

Fig 3. The axes were everything. Saws were not used in the New England woods until the 1890s, more than a century after the last mast pine was felled under the Broad Arrow Policy. Two axemen laid into the tree on opposite sides with the lower, deeper incision dictating the direction of fall. The blows fell rapidly. Chips the size of dinner plates flew for a dozen feet as the gleaming axe bits sank nearly to the helve in the soft wood of the white pine.

There was pride in the swiftness and the accuracy of the fall and in the planned look of the deepening vee. The heart was reached by the axemen. A shudder went through the great tree. Final blows were dealt. With the cry of 'Tim-ber.......!' the axemen jumped clear. If skill and judgment were rewarded, the huge pine crashed into the bedding clearing. If it did not, a mast could be shortened or men killed.

The third choice of mast tree was what seventeenth century shipbuilders called 'spruce.' Trees of the genus *abies excelsa* of Europe, and *abies nigra* of North America had proven to make good topmasts and yards. Actually *firs* (from their botanical names) seventeenth century spruce trees large enough for great masts were found to be coarse grained and lacking in youthful toughness. Spruce of any age deteriorated faster than American pine or Baltic fir. Norway spruce was considered to be the best of its kind, good for six years in a spar. However spars of white pine or Baltic fir were generally good for twice that service.

As great sticks of the Baltic fir became more difficult to obtain, 'made' masts were resorted to in the English shipyards. The infinite care required in the fitting, coaking and banding of 'made' masts was a lengthy and expensive process. However the result was a composite stick well-stressed and made watertight to prevent decay. Arrival of the great pines was a boon to seventeenth century English shipwrights as a single stick could make a lower mast of the largest warship. But as the century progressed and ships-of-the-line grew larger, even the great pines were squared and coaked together in 'made' masts. A first-rate warship (100 guns) of the eighteenth century required lower masts measuring 36 inches diameter at the heel and 120 feet long. Its bowsprit measured 38 inches at the heel, 75 feet long.
Fig 4. Axe work again and quickly done. Most of the limbs of a mast pine were concentrated at the head. A good mast tree had pushed up through a grove of its fellows too tightly spaced to permit much sunlight or air to encourage the growth of branches along the trunk. The head was lopped off at the maximum length to yield a sound spar.

Unlike timber cut for structural purposes, where drying of the wood is all-important to its stability as lumber, masts were wanted 'wet.' Suppleness and elasticity were sought in a good spar. A good mast retained these qualities as long as the log retained its resin. Summer and fall cutting ensured a tree full of pitch. Retention of the bark was an asset to the future wanting 'wet.' Suppleness and elasticity were sought in a good spar. A good mast retained these qualities as long as the Jog pushing up through a grove of its fellows too tightly spaced to permit much sunlight or air to encourage the growth of branches along the trunk. The head was lopped off at the maximum length to yield a sound spar.

The wilderness of North America offered virgin growth timber and the possibility of wood by-products such as tar, pitch and turpentine to be manufactured by settlers. British development of a North American source of naval stores was hindered to some extent by the fact that the Admiralty had turned down the New England hardwoods as inferior stuff. New England white oak in particular was noted as being too straight for framing timbers and too prone to decay in shipment for shipbuilding purposes at all. Little naval attempt had been made to appraise the hardwoods of the American southern colonies, and the possibilities of live oak, cypress, and long leaf yellow pine as prime shipbuilding timber were missed together. But New England pine masts were another matter. The occasional shipload of New England masts arriving in English dockyards before 1650 had bailed the Admiralty out of critical shortage more than once. The pine was light in weight and easy to work. The massive logs, obtainable in great sizes only from New England, could be hewn and banded to make a one-piece lower mast for a warship of 500 tons or more.

The pine was light in weight and easy to work. The massive logs, obtainable in great sizes only from New England, could be hewn and banded to make a one-piece lower mast for a warship of 500 tons or more.

The pine was light in weight and easy to work. The massive logs, obtainable in great sizes only from New England, could be hewn and banded to make a one-piece lower mast for a warship of 500 tons or more.

The pine was light in weight and easy to work. The massive logs, obtainable in great sizes only from New England, could be hewn and banded to make a one-piece lower mast for a warship of 500 tons or more.

The pine was light in weight and easy to work. The massive logs, obtainable in great sizes only from New England, could be hewn and banded to make a one-piece lower mast for a warship of 500 tons or more.

The pine was light in weight and easy to work. The massive logs, obtainable in great sizes only from New England, could be hewn and banded to make a one-piece lower mast for a warship of 500 tons or more.

The pine was light in weight and easy to work. The massive logs, obtainable in great sizes only from New England, could be hewn and banded to make a one-piece lower mast for a warship of 500 tons or more.

The pine was light in weight and easy to work. The massive logs, obtainable in great sizes only from New England, could be hewn and banded to make a one-piece lower mast for a warship of 500 tons or more.

The pine was light in weight and easy to work. The massive logs, obtainable in great sizes only from New England, could be hewn and banded to make a one-piece lower mast for a warship of 500 tons or more.

The pine was light in weight and easy to work. The massive logs, obtainable in great sizes only from New England, could be hewn and banded to make a one-piece lower mast for a warship of 500 tons or more.

The pine was light in weight and easy to work. The massive logs, obtainable in great sizes only from New England, could be hewn and banded to make a one-piece lower mast for a warship of 500 tons or more.

The pine was light in weight and easy to work. The massive logs, obtainable in great sizes only from New England, could be hewn and banded to make a one-piece lower mast for a warship of 500 tons or more.

The pine was light in weight and easy to work. The massive logs, obtainable in great sizes only from New England, could be hewn and banded to make a one-piece lower mast for a warship of 500 tons or more.

The pine was light in weight and easy to work. The massive logs, obtainable in great sizes only from New England, could be hewn and banded to make a one-piece lower mast for a warship of 500 tons or more.

The pine was light in weight and easy to work. The massive logs, obtainable in great sizes only from New England, could be hewn and banded to make a one-piece lower mast for a warship of 500 tons or more.

The pine was light in weight and easy to work. The massive logs, obtainable in great sizes only from New England, could be hewn and banded to make a one-piece lower mast for a warship of 500 tons or more.

The pine was light in weight and easy to work. The massive logs, obtainable in great sizes only from New England, could be hewn and banded to make a one-piece lower mast for a warship of 500 tons or more.

The pine was light in weight and easy to work. The massive logs, obtainable in great sizes only from New England, could be hewn and banded to make a one-piece lower mast for a warship of 500 tons or more.

The pine was light in weight and easy to work. The massive logs, obtainable in great sizes only from New England, could be hewn and banded to make a one-piece lower mast for a warship of 500 tons or more.

The pine was light in weight and easy to work. The massive logs, obtainable in great sizes only from New England, could be hewn and banded to make a one-piece lower mast for a warship of 500 tons or more.

The pine was light in weight and easy to work. The massive logs, obtainable in great sizes only from New England, could be hewn and banded to make a one-piece lower mast for a warship of 500 tons or more.

The pine was light in weight and easy to work. The massive logs, obtainable in great sizes only from New England, could be hewn and banded to make a one-piece lower mast for a warship of 500 tons or more.

The pine was light in weight and easy to work. The massive logs, obtainable in great sizes only from New England, could be hewn and banded to make a one-piece lower mast for a warship of 500 tons or more.

The pine was light in weight and easy to work. The massive logs, obtainable in great sizes only from New England, could be hewn and banded to make a one-piece lower mast for a warship of 500 tons or more.

The pine was light in weight and easy to work. The massive logs, obtainable in great sizes only from New England, could be hewn and banded to make a one-piece lower mast for a warship of 500 tons or more.

The pine was light in weight and easy to work. The massive logs, obtainable in great sizes only from New England, could be hewn and banded to make a one-piece lower mast for a warship of 500 tons or more.
Part II

New England
NEW ENGLAND PINES

If the Admiralty was slow in turning to New England for pine masts in the upsurge of overseas trade following the defeat of the Armada and the close of the Spanish war, it is likely that the prospect was not cheaply to be accomplished. In 1600 there was no commercial trade with North America. To send directly for mast logs was a year’s expenditure for ship’s charter, ship’s crew, timber-cutting crew, and armed guard—with no immunity from savages, pirates, rival belligerents or the perils of a North Atlantic passage. By 1652, when the timber crisis in the shipyards forced the Admiralty to send mast ships directly to New England, there were pockets of settlement and colonials willing to produce any kind of timber for a guaranteed market. A foothold in the wilderness and the beginnings of trade by settlers had taken nearly fifty years to accomplish.

Fully a century of exploration had preceded New England settlement. The early explorers in the wake of Cabot’s voyage of 1497, upon which Britain had based her North American claim, were looking for precious metals or a route to Cathay. Later explorers of the 1500s, usually in the employ of merchants, assayed the coasts and estuaries for commercial exploitation. Breton, Basque and British fishermen mingled with explorers along the coasts of New England and Atlantic Canada. This distant-water fishery, home-based in the Old World, was a century old when New England settlement began.

An explorer seeking locations for settlement in 1605 was Captain George Waymouth, employed by Sir Ferdinando Gorges and others holding proprietary rights in the new country. As Waymouth’s vessel, Archangel, stood into a river (identified today as the St. George, in Maine), James Rosier, chronicler of the voyage, noted of the shore:

The Wood it beareth is no Shrubbish fit only for Fewell, but good tall Fi‘e, Spruce, Birds (birch?), Beech, and Oake. Be that as it may, there was plenty of firre for ships’ masts. Henry Hudson is reported to have cut a fresh foremast for the Half Moon on the southern shores of Penobscot Bay in 1609. The first mast shipment of note came from the same region in the Hercules of Dover, 1634. Possibly these great sticks were cut from the hills of Camden and Union where Captain George Waymouth had observed, . . . notable high timber trees, masts for ships of four hundred tons.

Botanists have shown that the important trees of pre-settlement New England were deployed approximately in accordance with the accompanying map redrawn from Charles F. Carroll’s, The Timber Economy of Puritan New England (Brown Univ. Press, 1973). The classic view is that the white pines met the sea from Nova Scotia to New Hampshire, and stretched westward, coursing the upper valleys of the Connecticut and the Hudson rivers and along the St. Lawrence.
The New England of 1620 was a wilderness territory offering little incentive for commercial settlement. The fishery was already being taken by home vessels without need of any but temporary shore facilities. Furs, obtained by trade with Indians, were slipping into the hands of the Dutch at New Amsterdam as well as to the French by way of the Acadia settlements and the St. Lawrence. Standing timber was too bulky to cut and assemble for shipment without extensive shore establishment, and timber was too expensive to ship transatlantic without preferential duties in the home market. English colonies to the south of New England had commercial advantage due to their gentler climates and longer growing seasons. Virginia and the Carolinas produced foodstuffs, tobacco, rice and indigo in exportable quantities. Further south, the island colonies of Barbados, Nevis, St. Kitts and (later) Jamaica would give up general cropping for a sure-sell specialty in sugar products. For the London merchant a New England venture meant shiploads of colonist supplies and Indian-trade goods risked against return cargoes of whatever raw products could be mustered by settlers taken to that region. Settlement was tried at the mouth of Maine's Kennebec River in 1607 by the Plymouth Company, with colonists led by George Popham. Although some furs were returned by trade with the local Indians, winter hardship and the death of its leader doomed the Popham colony to failure. A foothold on Massachusetts Bay was gained thirteen years later by Pilgrim zealots underwritten (for settlement in Virginia) by an association of English merchants headed by Thomas Weston.

Between the Pilgrim arrival in 1620 and the arrival of Admiralty mast ships in 1652 lay three decades of land clearing, hardwood farming, and grubbing for return cargoes to pay for supplies sent from England. The 1620s saw returns of furs gained by Pilgrim shrewdness in trading with Indians at truck houses established at the head of navigation on the Kennebec and the Connecticut rivers, and closer to home at the headwaters of Buzzards Bay. Neither the Pilgrims of the 1620s nor the Puritans of the 1630s were versed in seamanship or fishing. A colonial fishing industry got going very slowly due to inexperience and lack of boats. Skilled shipwrights arriving with the flood of Puritan settlers in the 1630s built some ships for fishing, notably at Salem, but were hampered by lack of capital, nails, cordage, and sailcloth. Lack of money to pay their accustomed wages turned many incoming tradesmen to clearing land for farms. There was some production of hand sawn boards, hand split barrel staves ('clapboards' in older parlance) etc. to send back with the returning immigrant ships, but most of the incoming trade of the 1630s was the exchange of immigrant possessions for land, cattle, and the materials for new homes.

Shipbuilding, to 120 tons, had begun with a few vessels built at Medford, Salem, and on Richmond Island near Casco Bay in Maine. A waterpowered sawmill had been established at Berwick, and a tide powered sawmill at Agamenticus. Pine boards, hand split shingles and clapboards were added to whatever outbound cargoes of dried codfish or farm produce could be accumulated in surplus. English demand for masts and naval stores was well known to the settlers. Although there was some attempt to grow hemp, flax, and tobacco, these products never really took hold as a New England product. There is no doubt that some of the mast cargoes returned to England during this period went back with the discharged immigrant ships. However, loading of masts aboard a regular carrier assumes that the tallest trees of the forest have been cut, moved, hewn and assembled for shipment in a hostile, unpopulated region much further east.

The stream of Puritan immigrants which provided New England settlers with trade goods for nearly a decade closed down in the late years of the 1630s. England was in revolution. Religious and civil reforms begun by the Long Parliament gave English Puritans incentive to stay at home. Economic depression was felt in New England as incoming ships continued to land needed goods without offering immigrant demands for homesteading essentials. However, Boston merchants probing the hemisphere for colonist markets had discovered that oak staves and heading for wet storage containers - pipes, hogheads, casks, barrels - could be sold to wine producers in the Caribbean and Azores Islands. In fact there was considerable demand for American white oak which made excellent cooperage for the ageing and transport of wine. Staves and heading sent to the wine islands returned wine cargoes to the English market, where credits could be offset against goods delivered to New England. This first independent New England export was soon extended to the winemakers of Spain and Portugal who welcomed the American dried codfish surplus along with the barrel shooks. The colonial fishing effort had increased and was seeking new markets. The shipbuilding industry came to life at Boston and Charlestown and the first vessels constructed were for carrying shaker casks and dried codfish to the wine islands. Docks everywhere were piled high with staves and
The first job upon arrival of crews for winter hauling of timber was the erection of shelters for the draught animals. Animal shelters in the woods were then, as now, called 'hovels.' They would be quickly erected from any material at hand. Smaller growth pines and the lopped branches from limbed logs would be available in profusion. Bark was often used where backing was done.

This was the time for making sleds or 'scoots' upon which the big logs would travel. When time permitted, additional bunk and cooking shelters would be erected for the men in order to relieve the farmhouse of its welcome, but burgeoning, complement of guests.

Fig 5.

The mast road led from the prostrate tree to the nearest waterway. It might be yards or miles in length. At roughly 40 lbs. per cubic foot, a mast log measuring from three to six feet at the butt and one hundred and twenty feet in length, might weight 10 tons. Sleds would support it in three or four places only. The road it travelled had to be prepared very carefully. Stumps and rocks were removed. Soft places were packed with logs and brush. Side hills were cut away and the roadbed wharfed with timber on the downward side. Bridges were built or strengthened. When the snow fell in the late fall, it was packed upon the mast road, wetted down and frozen solid. Lesser spars made the first trips over the thickening ice road. Then a bowsprit. When the ice road was proved, a mast log was loaded.

To 'twitch' a log, is to move it over the ground by brute strength without benefit of wheels or runners. It is one of those expressions used by woodsmen which harks back to the mast trade.
heading which departed in large shipments along the wine route. Private speculation in masts and trunnels began with a shipment from Boston to England in 1645. Similar shipments were made during the three years following. In 1650 a new and broader market opened for New England merchants striving to get on their feet: staves and heading of porous red oak, for sugar and molasses casks. The island of Barbados had dropped all other crops and stripped the land of timber in favour of sugar production. Oak for cooperage was needed along with structural timber for rolling machinery, mill buildings, slave quarters and wharves, etc. Dried fish was in demand for feeding slaves and mill hands. The opportunity extended to other Caribbean islands which had also converted to sugar production. Returned sugar, molasses and rum cargoes were saleable just about anywhere. By 1652 New England lumbering, shipbuilding, fishing and overseas trading had made a solid start from primitive beginnings just thirty years before. One can only speculate that if the restrictions and incentives of the oncoming Broad Arrow Policy had been applied to New England when the 1630s Puritan immigration slumped, the American appetite for competitive enterprise might have died at birth.
Snub rope and bridle chains

Fig 7. Uphill drawing, or along the flat, was no problem with a ten ton mast, so long as the ice road did not slump under the weight. Downhill required a good deal of skill and forethought. The oxen were usually brought to a halt at the crest of a hill where braking had to be done. Sometimes the downward slope was swept of snow, or roughened with straw to increase the friction. Bridle chains, so called, were dragged beneath the runner of the mast scoots. Snub ropes were used, rigged as restraining lines from a sturdy stump or a standing tree. Oxen were deployed behind the load to act as a drogue. This was called "tailing."

Downhill was tough on the oxen. If the scoot to which they were yoked was lifted by the long log spanning a depression, or rising over the crest of a hill, they hung in the yoke and were strangled. Backs and legs were broken by the chain as the scoot regained earth, slipped into a stump, or lurched off the ice road. Teams were demobilized if the snub rope was not smartly handled. The procession was not stopped to replace a killed or injured animal. The dragging beast was cut out of the yoke and another run into its place as the big log moved on. Spare oxen, with their drovers, were standing by all along the ice road.

THE BROAD ARROW POLICY

With the arrival of mast ships dispatched by the Admiralty in 1652, the annual shipment of New England masts to English dockyards began. The mast logging effort was well paid. It sought the best trees in the New England pine forest and required undamaged delivery of the whole tree trunk at specified coastal shipping locations. The work took tremendous skill in the felling and in the overland or water delivery of the logs. Hard money was paid for the labour by the London timber contractors. But gold paid for mast logs could not buy food where planting had been neglected, and many a new settlement of farmer/loggers was to experience winter starvation before the lesson was learned.

New England masts were free enterprise in 1652. The Admiralty's move to get mast logs out of the forest produced the labour force, the woods technology and the holding facilities to make a business of masts along the growing routes of New England trade. Sawmills followed the loggers and took a growing share of the felled pines for conversion to now-merchantable boards, joints and other structural lumber. Since the Admiralty contracts called for supplying naval yards at Antigua and Jamaica as well as England, an extended mast trade with the French colonies in the sugar islands as well as the needs of Spanish shipbuilders along the wine cask route were not ignored by New England merchants. A sound, dressed log for a great mast was frequently worth more than £100 throughout the whole period. If reduced to wide boards, its delivered lumber was salable for wooden construction at a figure more easily collected by the woodland entrepreneur. With British pressure for dependable delivery of New England pine masts, a wholesale colonial lumber industry began to flourish. By 1685 colonial merchandising of New England white pines had reached a point where the Admiralty felt that strong measures were needed to protect the remaining mast trees in the settled locations, as well as further to the east where lumbering was bound to occur. Accordingly a Surveyor of Pines and Timber in Maine was appointed by the Crown to oversee the Admiralty's mast interests in New England. His commission called for a survey of the Maine woods within ten miles of any navigable waterway as well as the blazing of all suitable mast pines with the King's mark. Appointment of a Surveyor was the first step in the formation of a colonial forest policy.

England had restored the monarchy under two successive Stuart kings. A war with Spain was concluded in 1660, a second war with the Dutch in 1667, and a third war with the Dutch in 1674. There was continuing need for ships' masts as well as a sudden demand for American lumber of any kind following the great London fire of 1666. As William and Mary ascended the throne in 1689, naval construction was stepped up to meet an oncoming struggle with the French. A new timber crisis developed in the dockyards as the growing hostility of Sweden threatened to close the passage to the Baltic. To ensure a continuing and dependable supply of masts and naval stores from the American colonies, Parliament moved to commandeer the American pines and to control their destruction by mast entrepreneurs, shingle splitters, and sawmill operators. It was basically a mercantilist move to shift timber emphasis away from the French and dependable supply of masts and naval stores from the American colonies, Parliament moved to commandeer the American pines and to control their destruction by mast entrepreneurs, shingle splitters, and sawmill operators. It was basically a mercantilist move to shift timber emphasis away from the French

THE BROAD ARROW POLICY

Enacted piecemeal between 1691 and 1729, the Broad Arrow Policy governed New England land rights and woodland activity until the outbreak of the American Revolution broke its grip in 1775. Carried to Canada with American loyalists, the Broad Arrow Policy continued to supply masts from the Canadian woods until wooden spars were replaced by iron.
Baulking

Fig 8. Baulking is hauling. Hauling of big timber over the roads where wheels or sleds can be used. A baulk is a squared tree trunk. The word goes back to ancient shipwrightery. Mast loggers applied it to the big unhewn pines moving out from the woods.

Masts were sometimes baulked during warm months, although moving big timber on a soft road, without snow, was an expensive job. Paired wheels of tremendous diameter were used instead of sleds. The big log was hoisted up and secured under the axles. The galamander of the stone-cutters, in later years, was a specialised version of the loggers' wheels.

Town square

Fig 9. Mast roads led straight to the nearest waterway, often through coastal towns. Or, to put it another way, coastal towns in the white pine belt of New England often grew up around roads packed hard by the mast baulkers. Where mast roads met en route to the landing, the intersection soon described the turning radius of the big sticks. The town "square" of many a New England coastal village owes its peculiar shape to corners clipped by oxen dragging masts in the earliest days.
ENABLING ACTS

The teeth of the Broad Arrow Policy were specific Acts of Parliament embodying, on one hand, restrictions on the cutting of trees claimed by the Crown; on the other, incentives in the form of cash bounties (filtered through the London timber contractors) for the cutting and delivery of marked trees. Local extensions of enacted timber restrictions were ramrodded through colonial legislatures by Crown pressure in areas where boundary changes or the terms of original charters gave lumbermen an opportunity to resist.

The initial assertion of Crown proprietorship over standing pines, and Crown authority to interfere with wasteful use of them, is found in the last clause of the new charter granted to Massachusetts by Parliament in 1691. Reserved to the Crown were all trees of the diameter of twenty four inches and upwards at twelve inches from the ground growing within Massachusetts territory on ground not previously granted to any private person. The stated penalty was £100 for every such tree cut or destroyed without licence from the Crown. These terms served, without much change, as the basis for mast laws in the colonies right up to the Revolution. Blazing of mast trees was begun. To combat resistance of landowners and lumbermen which set in almost immediately, successive Acts extended Crown jurisdiction over colonial pines, closed loopholes exploited by the settlers, added cash incentives and guaranteed a market for American forest products.

A 1699 Order in Council directed the Crown claim on mast pines to all the New England colonies.

The Act of 1704, passed by Parliament as Britain faced a shut-down of the Baltic source by the Great Northern War, encouraged the import of naval stores from America by means of bounties payable to the importing merchants. £4 per ton for tar and pitch was offered; £3 per ton for ‘Rozin or Turpentine;’ £6 per ton for hemp; and £1 per ton for masts and bowsprits. A ton was considered to be forty cubic feet of hewn pine timber, or fifty cubic feet of unhewn. The Navy was to have first choice of all such articles within twenty days of their arrival in Britain. Mast timber and naval stores were thereafter included on the enumerated list of colonial export items (which included sugar, tobacco, indigo, cotton and dyewoods) that were to be shipped nowhere but to England.

The Act of 1705 was directed at naval stores. It forbade the cutting of small Pitch Pine and Tar Trees not being within any Fence or actual Inclosure, under the growth of twelve inches diameter.

The Act of 1711 gave the Surveyor of Pines and Timber authority in all colonies from Maine to New Jersey. Ten years later his power was declared inadequate as colonial merchants found roundabout means to ship mast timber to better buyers in rival countries, and woodsmen found ways to elude the Surveyor and his deputies.

The Act of 1721 extended the restriction to include, ... any White Pine Trees not growing within any Township or the Bounds or Limits thereof ... This act renewed the bounties (which had lapsed) and removed duties on all forms of American lumber, adding the word ‘lumber’ (an American word being officially recognised for the first time) to the list of enumerated colonial products tradeable only with England. The terms of the Act were extended to Nova Scotia and to Scotland, to stimulate production of masts and tar in the fir forests there.

The Act of 1729 was a blanket act which modified, recapitulated and re-enacted the provisions of the previous acts which had established the Broad Arrow Policy in the colonies. The bounties on masts and hemp were kept the same whereas those on tar, pitch and turpentine were somewhat lowered. Better enforcement provisions were added to close loopholes that were permitting private property to be created from otherwise Crown lands, or were permitting the escape of acceptable mast logs under some other timber description. The Act of 1729 remained in effect until the outbreak of the American Revolution in 1775.

Mast landing

Fig 10. A mast landing was any place reachable by oxen where the mast baulks could be twitched into floating delivery. Tidal marshes were the usual terminus of mast roads during the earliest days. As the cutting moved inland, the big logs were launched into any water draining into the sea which would bear their length and draught. ‘Mast Landing’ still appears as a place name on modern maps of New England.

The mast landing, on tidal water, was the likely place for delivery of the King's timber to representatives of the mast agent. The big sticks were rafted together and towed to the mast depot from here.
Mast depot

Fig 11. A mast depot was the established location where the King's pines were assembled, graded, hewn to sixteen sides and loaded abord vessels fitted to carry mast baulks within the hull. It was the headquarters of the colonial mast agent who operated under the licence of a mast contractor favoured by the British Navy Board.

In the left foreground, a nearly loaded mast ship is receiving lesser spars on deck, while topping off the load below decks with mast baulks pulled upward through the open stern ports. The two vessels at the right, floating nearly empty, are loading masts downwards from ramps just astern. The long mast house with its crews of hewers is in the middle background of the scene. The view, although conjectural, attempts to show the mast depot which fronted the Fore River on Cleeve's Neck, just below Vaughan's Bridge at Falmouth (now Portland), Maine.

GAINS AND ABUSES

There was precedent for the Broad Arrow Policy. The French called it marélage - the right of naval contractors to mark and cut any tree in the kingdom fit for ship timber. Their policy had been extended to the French settlers in Canada. English kings had exercised similar prerogative within private estates on the English countryside until civil war in 1647 had ended it. Now Parliament had imposed on the English colonies in North America practically the same condition from which its landowning membership had freed itself at home.

The Crown claim to certain trees on public lands in North America applied, at first, only to Massachusetts. However the Massachusetts colony, as defined by the new 1691 charter, combined the old colonies of Plymouth and Massachusetts Bay along with Maine and Nova Scotia. Its territory included the whole shoreline from Cape Cod to Newfoundland with the exception of New Hampshire which was governed by a separate charter. Whether certain lands were private or public determined where the Broad Arrow struck.

The various Acts specifically excluded trees on private property, yet as the dispute continued as to what 'private property' implied, royal interpretation gradually rendered the term meaningless. All pines were commandeered in the end. Settlers of the Old Colony considered the title to their lands to be clear and unreserved. Official answer was that abrogation of the old charter in 1684 had wiped the slate clean, and that the Broad Arrow terms of the 1691 charter now governed. New Hampshire, with its pines threatened by the 1699 Order in Council, was bullied into passing local legislation with terms similar to those in the Broad Arrow clause of the Massachusetts charter. It was in Maine that virtually all land could be called Crown land in the opening decades of the eighteenth century due to decimation of the settlers by Indian raids.

Maine was in two parts at this time. The province called 'Maine' extended only from the Piscataqua River to the Kennebec. Since 1677 it had been governed by Massachusetts under purchase from the heirs of Sir Ferdinando Gorges. The eastern districts, then called 'Sagadahoc Territory,' were in a flux of ownership between English grantees and the French. It was in Maine that the Surveyor General was to have his most trying moments with the pine-cutting violators. However, the Surveyor's enforcement of the Broad Arrow Policy was considerably helped by the requirement that the fines be split with informers.

A mast pine was not difficult to identify whether it stood on public or private land. It was a tremendous tree which stood head and shoulders above other pines in the forest. If found and marked by the Surveyor, it was still a mast pine and the burden was on the squatter and the lumberman, until he found a way to remove them without being prosecuted.

Bounties on mast timber at £1 per ton did not begin to approach the market value of those virgin growth trees when exported illegally as spars or cut by night into lumber. The market for New England lumber continued to grow irrespective of controls by the Crown. Farmers cut the wind screen of lesser trees from around mast pines so that they would be shattered by wind fall in a heavy gale. Marked pines simply disappeared. Their lumber, when found in the sawmills, never measured to the punishable twenty-four inch width.

Fires started mysteriously on Crown lands and rendered scorched pines useless for masts but quite salable in lumber. Customs officials turned their backs on outgoing cargoes of mast logs listed on the manifests as construction timber. Paper townsprings sprang up. These were large tracts of wilderness land given to prominent citizens who were to act as absentee proprietors until the townsprings were populated; as private lands they could be lumbered with impunity.
Throughout the ninety year life of the Broad Arrow Policy in colonial New England, the Admiralty paid a normal bounty of £1 per ton of acceptable mast pine. A ton was considered to be forty cubic feet of hewn timber, or fifty cubic feet of timber in the rough.

Crews of hewers laid out the maximum payable dimensions for each pine brought into the mast depot. Each stick was reduced to that size with broadaxe and adze. The contracts specified that the exported masts be 'sixteen sided' which is, of course, the shape arrived at when the corners of a squared baulk are removed twice-around. Final shape and taper to the finished mast would be applied by the mastwrights in England.

This scene shows the laying out and hewing of sixteen sides. In practice a big template with comb teeth was probably dragged down the length of the log, marking the spaced edges of eight facets as it went. As the log narrowed from butt to head, the 'comb' would be dragged diagonally to maintain the narrowing proportion of the eight edges being marked. The work shown here would most likely have been done within the mast house at the rear of the picture.

Four decades passed between the new Massachusetts charter of 1691 and the final Broad Arrow Act of 1729. Restrictions were laid down, incentives were offered, loopholes were closed. But the law was almost impossible to enforce. No Surveyor with a few deputies could hope to mark all the eligible pines. Their efforts to apprehend woodcutters or to seize logs illegally cut were but token action in a region occupied with land clearing and woods harvest. Virgin growth timber was New England's conspicuous, God-given resource. It ranked second generation Puritan settlers to have agents of the Crown interfere with property rights or to commandeer their best trees. Free market for ships' masts in 1652, spearheaded by the Admiralty's turn to New England, had sent woodchoppers to open timber lands in the eastern river valleys and along the coast of Maine. Forty years of increasing timber export to the world had leveled momentarily when the King laid claim to the whole pine forest. Then it resumed as colonial merchants and lumbermen found ways to get pine timber out of the woods and on to the high seas in some form that passed the scrutiny of the Crown's agents. Bounties, payable by the Admiralty under the terms of the 1704 Act helped turn the attention of London timber contractors from the Baltic to New England, but although this was a legal market, it was not the most profitable for the landowners, the ship-owning colonial merchants, or the woodcutters. Back-door lumbering of the King's mast trees (after 1691) or the King's pine forests (after 1721) was practiced throughout New England by prominent citizens, agents of the Admiralty timber contractors, and some of the less scrupulous Surveyors of Pines and Timber during the whole era of the Broad Arrow Policy. Enumeration of American lumber among the list of items exportable only to England did little to stop the outbound cargoes of New England timber to other parts of the world.

The Broad Arrow Policy succeeded in controlling a supply of mast timber that supplemented the Baltic imports during a crucial century of British naval history. It continued to supply masts from British Canada after the American colonies revolted. If the Admiralty can be commended for forcing expansion of the New England woods industry by its quest for masts, the undermining of New England property rights and business morality by the Broad Arrow Policy served mainly to fan sparks of rebellion in the colonists. It is true that Crown attention to American products throughout the duration of the Great Northern War (1700-21) gave New England trade a healthy start, and that the bounties paid under the 1704 Act created a profitable naval stores industry in the southern American colonies that might not have materialized otherwise. Yet, trade is trade. Had the offered price been right to begin with, sufficient quantities of New England mast timber would surely have reached England to the exclusion of all other buyers without the need of a restrictive policy.
Mast ships

The early mast carriers were any vessels looking for homeward cargo. The vessel at the left in the scene, is one of this early tramp type. She is a Dutch fluyt, put into the masting trade under British colours. Her rig and headwork date her to about 1650, or about one hundred years earlier than the setting of this scene. However, the fluyt was reputed to be a fast sailer and a good carrier. Vessels of this class appear quite late in contemporary American port scenes.

The middle vessel is a snow of about 1750. The vessel loading from the water at the right is a mast ship of proportions likely to have evolved in this particular trade during the hundred year span of the Broad Arrow Policy.

Notice the problems entailed in the shipboard loading of mast baulks. With no cargo aboard, a vessel lay high in the water, with her stern ports elevated. The ingoing spar would have to be run upward to the stern port and then downward into the hull. Tons of weight were involved. As the vessel filled with baulks and settled downward with her ports nearer the water, the masts would be run straight in. As she topped her load below decks the open stern ports were nearly awash. She would have to receive the masts upward into the hull, probably from the water.

The picture placed is meant to be the mast depot on Cleeve's Neck, Falmouth, Maine, around 1750. The mast ships are carefully fleshed out from the hull lines of contemporary vessels in Chapman's Architauctura Navalis Mercatoria, a Swedish manual of ship design published in 1768.

MAST AGENTS AND SURVEYORS

English masts had always come from abroad. Mast timber had been purchased throughout the years from London contractors who retained agents in the Baltic ports where suitable sticks were assembled for export. When North America was turned to for a fresh supply of bigger wood, it was these same mast contractors who obtained licence to cut American pines reserved for the King.

Mast agents for the London contractors took up residence in New England. Some of their names became linked with the future of the region: Samuel Waldo, mast agent at Boston; Mark Hunking Wentworth, mast agent at Portsmouth; Thomas Westbrook, to be succeeded by George Tate, mast agent at Falmouth (now Portland); and Edward Parry, at Georgetown (now Bath). Nothing prevented these mast agents from setting up as lumber merchants on their own accounts. Most of them became rich and powerful men in their respective colonies. The mast agents were, in a sense, New England managers of commercial enterprises based in London. They were not King's officers, but licensees of licensees permitted to harvest the Crown timber.

The King's man in New England was the Surveyor of Pines and Timber in Maine. Appointments to this post began in 1685. At first the surveys extended ten miles inland from any navigable waterway. Then as the trees disappeared and the need for them continued, the Surveyor and his deputies sought to range the whole of the pine belt from Nova Scotia westward to the St. Lawrence. In the beginning their duty was to survey the stands, mark the suitable trees, report their locations, and to instruct the colonists in the growing of hemp and the making of tar. These duties were to be carried on in addition to their main employment as customs agents. The tree work soon got out of hand and production of tar and hemp never became interesting to the New England colonists.

The King's Surveyor was hardly popular with the New England colonists. The office was badly paid to begin with and the area to be covered by this officer and his four deputies was tremendous. It was work enough just to find and mark the trees which tended to disappear when the incisors of the Broad Arrow had passed through. Swamp law governed the future of informers. The colonial courts increasingly sided with the violators as conditions slid towards the Revolution.

One Surveyor deserves mention in the era before that office fell into the hands of the Wentworth family at Portsmouth. This was John Bridger. Bridger was a former shipwright who sincerely believed that the King's Navy could be well served with the forest products of North America. He did his job too well in the wake of lesser appointees who had been lax, disinterested, absentee, or involved in the timber harvest themselves. Bridger conducted extensive and accurate surveys and he locked horns with the backwoods mast pine hijackers for twenty-five years. His reward was to be dropped from the King's payroll in favour of someone with better connections at home.

The Admiralty's avenues for purchasing ship timber had always been rank with politicians, graft, and the costs of private monopoly gained by the contractors. The King's masts, from North America, were no exception. When the fumies cleared, Portsmouth, New Hampshire was the centre of the mast trade; Governor Benning Wentworth of New Hampshire was the Surveyor General; and his brother, Mark Hunking Wentworth, was mast agent at Portsmouth, N.H., with powerful ties to the Navy Board at home. During Benning Wentworth's administration from 1743 to 1766, the Broad Arrow Policy was softened, while townships were sold under the authority of the Governor, and the marked timber within them was merchandised selectively by his brother. The Wentworth brothers extended their control into the pine forests of the upper Connecticut, the upper Hudson, and well into the Old Gorges patent in Maine. It was John Wentworth, Benning's nephew, who succeeded into the Governorship and the Surveyor General's office in 1766, and who put the administration of the Broad Arrow Policy back onto the footing of tireless, vigorous, and consistent enforcement which harked back to the efforts of John Bridger.

But the lands drained by the Piscataqua had been stripped of mast pines to the White Mountains by then. During the summer of 1761 and again in 1762, forest fire destroyed a wide swath of the finest mast pines that Portsmouth and Falmouth had been drawing upon. The burnt area extended from the woods of New Hampshire to the shores of...
Casco Bay, a distance of some fifty miles. The mast loggers moved east to new settlements as far down the coast as Machias. By 1772 the main volume of mast exports had passed into George Tate’s jurisdiction at Falmouth, Maine.

The outbreak of the Revolution ended the Broad Arrow Policy in New England. In April 1775, news of Bunker Hill and Lexington stopped all shipments of masts to the King. Waiting mast cargoes were seized by the colonists at Portsmouth, Falmouth and Georgetown. The load of mast baulks seized by the colonists from the mast ship Minerva was reported to be rotting in Portland harbour fifty years later.

Mast logging as a marine trade did not end in New England with the eclipse of the Broad Arrow Policy. Pine masts continued to be cut and shipped by Yankee traders to whomever would buy them at the highest price. France was a good customer for New England masts during the Revolution.

England continued to import them, although on a commercial basis, after the war had ended. But the King had other trees in North America. Until about 1825, great pines marked with the broad arrow continued to move out of the valleys of the Saint John and the Mirimichi to the King’s depot at Halifax. The administrator of the Broad Arrow Policy in Canada was former New Hampshire Governor, John Wentworth, Loyalist.
During the era of the Broad Arrow Policy, the mast transports ranged from 400 to 600 tons burthen. At least one mast ship is reported to have measured 1000 tons. Cargoes of thirty to fifty mast baulks were recorded, along with lesser spars dunnaged between or carried on deck.

This scene exhibits the reconstructed interior of the 'single deck fly-boat for transporting timber for masts,' the hull lines of which are given in Plate 27 of *Architectura Navalis Mercatoria*, Sweden, 1768. What's different about this fly-boat (variously: 'flight,' 'flute,' 'fluyt') design for a mast transport, is that she is completely open inside. The other vessels of this size shown in Chapman are well braced athwartships, with one or more decks spanning the hull below the main deck. From the standpoint of stowage, lower decks would be no asset in a mast carrier.

If the scale for the fly-boat is read correctly, she appears to be a vessel 115 ft long, 27 ft maximum breadth, with 13 ft depth of hold. The hull is fitted with a capstan extending downward to the keelson. Large stern ports are the only other features which distinguish this mast ship from other carriers portrayed. The open fore-hatch was probably covered with a grating when the capstan was manned on deck. The men shown in the scene are scaled at about 5 ft in height.

Mast timber was highly prized material of war. The Dutch, the French and the Spaniards were delighted to seize an English mast ship during the whole era of the Broad Arrow Policy. Mast ships usually sailed in convoy with an armed vessel.

The mast ships were the ocean liners of their day. Westbound, they carried manufactured goods and immigrants to the colonies. Eastbound, they packed in passengers to England. Passengers must have camped atop the dunnaged masts, because the one known plan of a mast ship shows an open hold with no accommodation whatsoever.

This scene looks westward along the Fore River at Falmouth, Maine. The King's mast depot is in the background at right. Three loaded mast transports are preparing to get underway in convoy.
ADAMS, S. *The History of Bowdoinham, Maine*. Fairfield, Me., 1912.

KELLOGG, E. *Good Old Times*. Boston, 1898.

RIDLON, G.T. *Saco Valley Settlements*. Portland, 1895.

THURSTON, F.G. *Three Centuries of Freeport, Maine*. Freeport, 1940.

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aspects of the History of Wooden Shipbuilding (1970)</td>
<td>25p</td>
</tr>
<tr>
<td>2</td>
<td>The Opening of the Pacific – Image and Reality (1971)</td>
<td>25p</td>
</tr>
<tr>
<td>3</td>
<td>China Station 1859-1864; The Reminiscences of Walter White (1972)</td>
<td>30p</td>
</tr>
<tr>
<td>4</td>
<td>Plymouth’s Ships of War, by Lieutenant-Commander K V Burns, RN (1972)</td>
<td>50p</td>
</tr>
<tr>
<td>5</td>
<td>Problems of Ship Management and Operation 1870-1900 (1972)</td>
<td>25p</td>
</tr>
<tr>
<td>6</td>
<td>Three Major Ancient Boat Finds in Britain (1972)</td>
<td>25p</td>
</tr>
<tr>
<td>7</td>
<td>The Irawaddy Flotilla Company, by Captain H J Chubb (1973)</td>
<td>50p</td>
</tr>
<tr>
<td>8</td>
<td>China and the Red Barbarians (1973)</td>
<td>25p</td>
</tr>
<tr>
<td>10</td>
<td>The Birth of Navigational Science, by Dr E G Forbes (1974)</td>
<td>30p</td>
</tr>
<tr>
<td>11</td>
<td>The Building and Trials of a Replica of an Ancient Boat, the Gokstad Faering, Part I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Building, by Sean McGrail; Part II Trials, by Eric McKee (1974)</td>
<td>40p</td>
</tr>
<tr>
<td>12</td>
<td>Problems of Medicine at Sea (1974)</td>
<td>25p</td>
</tr>
<tr>
<td>15</td>
<td>The Boats of Men of War, by Commander W E May RN (1975)</td>
<td>30p</td>
</tr>
<tr>
<td>16</td>
<td>Problems in the Conservation of Waterlogged Wood, edited by Andrew Oddy (1975)</td>
<td>50p</td>
</tr>
<tr>
<td>17</td>
<td>The Elizabethan Navy and the Armada of Spain, by D W Waters, FSA, and G P B Nash, FSA (1975)</td>
<td>35p</td>
</tr>
<tr>
<td>18</td>
<td>Navigation in the Days of Captain Cook, by the late Professor E G R Taylor (1975)</td>
<td>25p</td>
</tr>
<tr>
<td>20</td>
<td>The Ship Registers of the Port of Hayle, by G Farr (1975)</td>
<td>£2.50</td>
</tr>
<tr>
<td>21</td>
<td>First Matthew Flinders Memorial Lecture, by Rear-Admiral G S Ritchie, CB, DSC, FRICS (1975)</td>
<td>25p</td>
</tr>
<tr>
<td>22</td>
<td>Shipbuilding in North Devon, by G Farr (1976)</td>
<td>£1.05</td>
</tr>
<tr>
<td>23</td>
<td>The North Ferriby Boats, a guide book, by E V Wright (1976)</td>
<td>£2.00</td>
</tr>
<tr>
<td>24</td>
<td>The Last Log of the Schooner Isabella, edited by C H Ward-Jackson (1976)</td>
<td>£1.00</td>
</tr>
<tr>
<td>25</td>
<td>The Westcoots and their Times, by Ian D Merry (1977)</td>
<td>£4.00</td>
</tr>
<tr>
<td>26</td>
<td>The Chinese Maritime Customs; an international service, 1854-1950, by B Foster Hall (1977)</td>
<td>£1.00</td>
</tr>
<tr>
<td>27</td>
<td>Shipbuilding in the Port of Bristol, by Graham Farr (1977)</td>
<td>£1.05</td>
</tr>
<tr>
<td>28</td>
<td>Sundials on Walls, by C St J H Daniel (1978)</td>
<td>£2.00</td>
</tr>
<tr>
<td>29</td>
<td>Naval Policy between the Wars, by Captain S W Roskell (1978)</td>
<td>£1.00</td>
</tr>
<tr>
<td>30</td>
<td>The English Coble, by H O Hill, edited by Eric McKee (1978)</td>
<td>£2.50</td>
</tr>
<tr>
<td>31</td>
<td>The Scottish Inshore Fishing Vessel, Design, Construction and Repair, by Alexander Noble (1978)</td>
<td>£2.50</td>
</tr>
<tr>
<td>32</td>
<td>The Hardanger Faering, by Owen H Wicksteed (1978)</td>
<td>£1.50</td>
</tr>
<tr>
<td>33</td>
<td>The Load Line - a hallmark of safety, by Captain Neville Upham (1978)</td>
<td>£2.50</td>
</tr>
<tr>
<td>34</td>
<td>Boats of the Labin River, by Manuel Leitão (1978)</td>
<td>£3.00</td>
</tr>
<tr>
<td>35</td>
<td>Ship Portrait Painters, by C H Ward-Jackson (1978)</td>
<td>£2.75</td>
</tr>
<tr>
<td>36</td>
<td>Ingrid and other Studies (1978)</td>
<td>£3.25</td>
</tr>
<tr>
<td>37</td>
<td>Vice-Admiral T A B Spratt and the Development of Oceanography in the Mediterranean, 1841-1873, by Margaret Deacon (1978)</td>
<td>£2.75</td>
</tr>
<tr>
<td>38</td>
<td>The Design of Planked Boats of the Moluccas, by G Adrian Horridge (1978)</td>
<td>£2.50</td>
</tr>
<tr>
<td>39</td>
<td>The Lambo or Prahu Bot: a western ship in an eastern setting, by G Adrian Horridge (1979)</td>
<td>£2.00</td>
</tr>
<tr>
<td>40</td>
<td>The Konjo Boatbuilders and the Bugis Prahus of South Sulawesi, by G Adrian Horridge (1979)</td>
<td>£2.30</td>
</tr>
<tr>
<td>41</td>
<td>A History of Rating Rules for Yachts 1854-1931, by Alan Viner (1979)</td>
<td>£1.20</td>
</tr>
</tbody>
</table>

Copies of these may be obtained from The Bookshop, National Maritime Museum, London SE10 9NF.

Prices shown do not include postage and packing.